446

static characteristic impedances of the coupled microstrips [4]. The
dielectric substrate thickness is H.

The previous considerations were used to obtain circuit models of
the microstrip structures whose dispersion was measured and re-
ported by Gould and Talboys [5]. The results comparing the experi-
mental data of [5] and the dispersion calculated from our circuit
model are shown in Fig. 2. For each set of microstrip dimensions
labeled by a number, letters ¢ and b refer to the dispersive odd and
even TEM ! modes, respectively, for that geometry as calculated
from (3) using the plus sign, and with » = jw. The geometric and
static data for the specific microstrips considered, taken from [4] and
[5], are presented in Table I. The cutoff modes which are paired
with the dispersive TEM modes are not shown in Fig. 2 since they
are strongly attenuated over the frequenecy band shown; their
cutoff frequencies are easily calculated from (3) as

fc, = [K“’Uo/zﬂ'(l —_ ki2)“2€ill2:|. (8)

Since the parameters of the approximation are based on the funda-
mental mode, this equation should probably be used with some cau-
tion. It has not been experimentally verified.
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Fig. 2. Measured and calculated effective dielectric constant of TEM

dispersive odd and even modes of parallel-coupled microstrips (see
Table I for physical dimensions).

TABLE I

" PARAMETERS OF PARALLEL-COUPLED MICROSTRIPS (AFTER
GETSINGER [4])

Line | Mode |[Static Impedancea Eff, Diel.Const. b W/H S/H H
Q atd.c. mm.

la odd 46.8 5.95

ib even 59.4 7.40 0.86 | 1.12 |0.630

2a odd 44.0 5.70

2b even 64.6 1.30 0.80 | 0.69 [0.630

3a | odd 46.6 5.25

b even 110.9 6. 60 0.30 | 0.19 {0.630

Notes: Column a calculated by the MsTRIP program using ¢ =
10.0. Column b determined by extrapolation of experimental curves
to zero frequency.

1 These are not true TEM modes since they have a longitudinal Hcom-
ponent, but they propagate 1o dc and for convenience are termed ‘‘dis-
persive TEM."’
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TABLE II

TE Curorr WAVENUMBERS OF PARALLEL-CoUuPLED MICROSTRIPS
(Opp, TEy; Even, TE,)

Line Mode | K =7/% x %/H
- (meters)~! | (mm.)
la odd 2066.6 1.52 2.41
1b even 765.7 4.10 6.50
2a odd 2061.6 1.52 2.41
2b even 834.9 3.76 | 5,96
3a odd 2233.1 1,41 2.24
3b even 1391.9 2.26 3.60

The cutoff wavenumbers of the TE lines used in the model of the
microstrips of Fig. 2 are reported in Table II. These numbers, K.,
and K., are parameters of the approximation and result from the
assumption of using TEy and TEy as higher coupling modes. Thus
they define the width and height of a hypothetical enclosing shield
and, in effect, yield a plausible estimate of equivalent shield dimen-
sions associated with the TE,y, TEy cutoff wavenumbers. Thus from
Tables I and II the equivalent height parameter (z/H, odd mode) is
about 2.3 H for all geometries. The width parameter (z/H, even
mode) varies from 6.5 H to 3.6 H (1.8/1), but note that S/H (S1is
conductor strip separation) varies over a 5.9/1 range. The substrate
thickness H is 0.630 mm for all geometries.

In any case, just as in the dielectric loaded round guide [2],
dielectric loaded rectangular guide [67, and single-strip microstrip
[37], the coupled-line equivalent circuit gives a simple physical model
with excellent experimental agreement for the dispersion properties
of a parallel-coupled microstrip. We believe this further demonstrates
that the coupled-line representation has broad applicability to a wide
variety of longitudinally uniform, transversely inhomogeneous
propagating structures.
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The Phase Shift Through Symmetrical 3-Port Circulators

G. RIBLET, MEMBER, IEEE

Abstract—Simple approximate formulas are derived for the phase
shift through matched circulators—with and without transformer
coupling—using expressions for the eigenadmittances Yo, Y_;, and
Y, which have recently been proposed. These formulas allow one
to predict the phase shift from measurements of the VSWR in
one case and from a knowledge of the transformer admittance V
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in the second. They have been confirmed experimentally for strip-
line circulators and indicate that in this respect circulators behave
like electrically long transmission devices.

I. INTRODUCTION

Circulators are frequently subject to a requirement on the trans-
mission phase shift versus frequency in addition to requirements on
VSWR, isolation, and insertion loss. It is well known from Bosma
[17, for instance, that this phase shift is 180° at the center frequency
of a lightly coupled circulator. This is insufficient information for
most applications, however, as usually the variation of phase shift
with frequency must be known over some frequency band. Little
has appeared on this subject in the literature, however. One reason
for this could be that the 2-port shunt resonator model which is
commonly used to understand the VSWR [2], [3] of circulators is of
no value when it comes to predicting this phase shift. In order to do
this, one must have a model which treats the circulator as a 3-port
device. Recently, Helszajn [27 has proposed such a model based on
the eigenadmittances Vo, Y3, and Y, [4], [5]. He assumes the
following frequency dependences for the eigenadmittances Yo, Y,
and Y, of a symmetrical 3-port circulator without external tuning
elements

Yo=+owj
Vo= —jbeot§ — g/V3)
Yy = —j(bcot 8 + g/V3). (1)

The quantity b is a normalized characteristic admittance, 6 =
(w/2)[1 + (w — wo/wo) ] with wo being the center frequency of the
circulator, and w, the operating frequency, and g is a monotonically
increasing function of magnetic field. Equation (1) provides a
phenomenological model for a circulator in terms of two quantities
b and wy which must be determined experimentally. The usual shunt
resonator model also has two such quantities which likewise must be
experimentally determined.

The important advantage of this 3-port model is that it allows all
experimentally measurable properties of a circulator, including the
transmission phase shift, to be calculated once b and wo are known.
In particular it allows the S-matrix parameters Sy, Siz, and Sis to be
determined. These parameters depend on Yy, Y3, and Y, through
the following series of equations which are well known from the
literature [67, [7]:

So+ 84+ S
n= 0
3
S = So+ S_yexp[—j(27/3)] + Siexp [ (27/3)]
12 = 3
So + S_aexp [j(27/3)] + Svexp [—j(2x/3)]
8 = 3 2)
and
1-Y,
So=1 + Y,
1~Y
Sa=7 LV,
1-Y
- 3
=TT (3)

with So, S.1, and S; being the eigenvalues of the scattering matrix.
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II. THE PHASE SHIFT THROUGH A SIMPLE
MATCHED CIRCULATOR

In order to determine the phase shift ¢, one must first determine
Si2. The phase shift is then given by

Im Slz
Re Slz )

¢ = tan™1! {

The eigenvalues So, S_1, and S; will be of unit amplitude if the circu-
lator is lossless so that the expression for Si; in (2) can be rewritten
as

Siz = ${exp (jo) + exp (1) exp[—j(27/3)]
+ exp (jy1) exp [+ (2x/3) 1}

where expressions for the phase angles yo, ¥, and ¢, follow from
(3) and are

Yo = —2tan™1 (—jY0),
Y1 = ~2tan™! (—jY7).

Y = —2tan™ (—jY ),

Suppose we now assume that the circulator is well matched with
the aim of finding simple approximate formulas for the phase shift.
In this case Sy is small and the eigenvalues Sy, S_;, and S; will be
separated by close to 120° on the unit circle. One can write

Vo =Y+ 27/3 6 Vi = o — 27/3 4+ &

with 8_; and 8; being small angles. The preceding expression for Sia
becomes

_ exp (#o) + exp [ildo +8.4)] + exp [i(¥o 4 81) ]

Stz 3
= ?ipgﬂ {1+ exp (i) + exp (i31)}
—N_M {8 4+ 9(51 + 1)} oexpi (%o =+ 6 + 51) .

3 3

Consequently, the phase shift ¢ is given approximately by

61+ &

; 4)

¢ =y +
assuming again that §_; and & are small as they will be for a well-
matched circulator. Equation (4) will be used to find approximate
formulas for the phase shift through simple and transformer coupled
circulators.

In the first case, expressions for §_y and & can be found using the
equations

—']'Y._l = tan {—gl/o/z — 7r/3 - 5_1/2}
-—jY1 = tan {—\00/2 + 7I'/3 ad 31/2}

with o = wsince Yo = joo. To determine §_; and &y, it is necessary to
substitute (1) for ¥ and Yy with ¢ set to 1 so that the circulator is
matched at midband, to expand the tan function using trigonometric
formulas, and then to solve for tan (6_/2) and tan (6;/2) which can
be approximated by 8_1/2 and 8:/2, respectively, if these quantities
are small. The result of these calculations is

o1+ 6

o

~b cot .

From (4) it follows that
¢~ + bcot g (5)
Now b can be determined from the frequency dependence of the

input VSWR either by curve fitting or by using the formula b =
(4/7V3) [wo/ (w41 — @) ] where w,ys and w_; are the upper and lower
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frequencies at which the VSWR = 2, [2], [5]. Once this quantity
has been found, the phase shift can be determined from (5).

This procedure was carried through with a 3.7-4.2-GHz stripline
circulator. Measurements of return loss and phase were made with a
high-pass (HP) network analyzer. A phase reference was estab-
lished by placing a short circuit at the same location as the ferrite
boundary. The phase shift is taken from the ferrite boundary in this
case and the outer transformer junction in the case of the trans-
former coupled circulator. In Fig. 1,the measured return loss is given
as a function of frequency. The dashed curves were calculated from
(1)—(3) using values for b of 5.5 and 6.5. There is a good fit to the
experimental curve with b = 6.5 while b = 5.5 is clearly too small.
In Fig. 2 the measured phase shift is given as a function of frequency.
The dashed curve follows from (5) with b = 6.5. The agreement is
quite good. It should be pointed out that formula (5) agrees with the
exact phase shift which can be calculated from (1)—(3) within 2
percent over the frequency range 3.5-4.3 GHz.

III. THE PHASE SHIFT THROUGH A
TRANSFORMER COUPLED CIRCULATOR

A simple approximate formula for the phase shift can also be
derived for the case of a circulator which is matched with identical
transformers connected at each port. In this case the result follows
almost directly from (4). If the circulator is perfectly matched at two
frequencies in the passband as a result of the matching transformers,
then 8.5 and §; will be zero at these two frequencies. It can also be
shown that for this model _; + & = 0 at the center frequency. It is
reasonable to take 6_; 4+ & == 0 in the passband. It follows from (4)
that

¢~y
~ —2tan™! (V). (6)

Yy is the input admittance for the symmetrical eigenexcitation at
the junction to the transformers. It is easy to show that

C 4+ DY,

Y =
® T A — BY,

with 4, B, C, D being the elements of the transfer matrix of the
transformer which has been connected at each port. Y, is the input
admittance at the ferrite junction which has been assumed to be
approximately given by j«. Consequently,

Y/ = —D/B = —Y cot 9

if the transformers are a quarter wavelength long at midband with
characteristic admittance Y. Finally, substituting this expression
into (6), one has

¢ >~ —2tan™l (—Y cot ). (7)

Surprisingly, the phase shift depends on the characteristic admit-
tance of the transformer alone.

Phase measurements were made on the same stripline circulator
used in the previous measurements except now with transformer
dielectrics giving a characteristic admittance ¥ = 1.82 in each of the
three arms. The VSWR was less than 1.4 from 3.0 to 5.0 GHz. In
Fig. 3 the experimental values of the transmission phase are given
over this frequency range along with values calculated from (7) with
Y = 1.82. The phase contribution due to connectors and connecting
strips has been subtracted out. The agreement is reasonably good
although it could be improved with a somewhat larger value for Y.

IV. CONCLUSIONS

It is apparent from Figs. 2 and 3 that the transmission phase for
both kinds of circulators is a nearly linear decreasing function of
frequency. Such is also the case for a length of transmission line L.
Let us write the phase shift as a function of wavelength ¢(\) as
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Fig. 1. The return loss of a simple stripline circulator as a function of
frequency. The crosses are experimental points while the dashed curves
were calculated with values for & = 5.5 and 6.5.
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Fig. 2. The transmission phase shift of a simple stripline circulator as
a function of frequency. The crosses represent experimental points
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¢(x) = — (@m/N) Lets + ¢o

with ¢ being a constant and Les an effective free-space line length
for the circulator. Then one can show from (5) that for a simple
circulator

Lets = be/4wo (8)
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with ¢ being the speed of light. Iri other words the effective length
increases as b increases or as the bandwidth of the device decreases.
Similarly, for a transformer matched circulator it follows from (7)
that

Lot = Ye¢/2. (9

For the circulators tested, (8) yields an effective léngth Lei =
12.7 em in the first case, while (9) yields an effective length Loy =
6.8 cm in the second. Surprisingly, the effective length of the trans-
former matched circulator is smaller although it includes two addi-
tional quarter-wavelength sections of transmission line. The equiva-
lent free-space diameter of the garnet disk was 5.2 cm or much less
than the effective length of 12.7 em for the simple circulator. Clearly,
circulators behave in this respect like electrically long transmission
devices.
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_Power Generation and Efficiency in
GaAs Traveling-Wave Amplifiers

F. GTIANNINI anp A. SALSANO, MEMBER, IEEE

Abstract—The effect of the dielectric loading in a bidimensional
Gals traveling-wave amplifier (TWA) is investigated, with respect
to the EM power generated by the structure and the efficiency of the
dc to RF conversion. The validity of some usual approximations and
assumptions is studied and a parameter, i.e., the power gain X effi-
ciency product, is proposed as a useful tool for comparing the possible
performances of TWA’s.

In this short paper the authors study the traveling-wave amplifier
(TWA) structure proposed in Fig. 1 and seek an expression of the
EM power generated by the electronic beam, which starts from the
definition of an equivalent negative conductivity of the medium,
which takes into account the effect of the RF charge p.

Following such an approach and using the solutions of dispersion
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Fig. 1. Geometric behavior of the structure. The values of parameters
used in the calculation of Re [g,']are: €a = 12, @ = 1 ym, no = 10%
em™®, vo = 1.5 X 107 em/s, uy = 7200 cm?/(V+s), u, = — 2400 cm?/
(V-s).

relationship associated with the structure, the theoretical efficiency
for different lateral loadings is obtained and the power gain X effi-
ciency is indicated as a meaningful parameter of the TWA.

The propagation of EM waves in negative differential mobility
(NDM) media has been studied by many authors [1]-[4] both in
monodimensional and bidimensional approximation.

These papers deal prevalently with the modal solution of the struc-
ture which can sustain an infinite number of modes having different
complex propagation constants, some of which correspond to grow-
ing waves. Following such an approach, the stability conditions were
also ascertained which allow the use of the active structure as a TWA.

On the other hand, less attention has-been paid to the energy
as an approach which takes into account the power balance between
the electronic stream and the EM field [567.

This is, moreover, a very important aspect of the matter because,
starting from the premise that the real power ‘“‘delivered”’ to the
beam equals the real part of the Poynting vector flux entering a close
surface delimiting a volume r, the existence or nonexistence of am-
plifying waves is connected to the “‘sign’” of the power “delivered”’
to the electronic beam. So, a formulation in terms of real power
associated with the beam, except the kind of instability the heam can
support, i.e., an absolute or convective instability, gives useful
information on the properties of the structure when it is used as an
amplifier.

Nevertheless, once it is found by the usual methods (Briggs [77,
for instance) that instabilities are of the convective kind, the amount
of generated real power for a fixed d¢ power dissipated by the device
gives directly the efficiency of de to RF power conversion.

The simple and well-known monodimensional model confirms that
this point of view is essential for the evaluation of the amplifier char-
acteristics and is a necessary complement of the solution of the prob-
lem in terms of phase and amplification constants associated with
the space-charge wave.

In fact, an infinite medium with uniform characteristics is con-
sidered in the usual hypothesis of the small-signal traveling-wave
analysis that follows.

1) Carrier mean free path is much shorter than wavelength.

2) Carrier lattice collision frequency is very large compared with
the operating frequency.

3) Carrier drift velocity is parallel to the direction of wave propa-
gation.

A compatible solution of the problem is [1]

8 Be — jﬁcz

where
Be = w/ )
Bz = eNop:/ eveao

with no doping density, u, mobility, ¢ permittivity of the medium.

If u. is negative, as it can be in the case of GaAs devices biased
above threshold, the corresponding wave grows as it travels at the
“oreatest growth rate’”’ obtainable [27] in a monodimensional NDM
structure, but no real RF power is generated since RF current density
and electric field are 90° out of phase in the time domain, in accord-



